نگرشی بر حل مسئله ی برنامه ریزی خطی بازه ای

thesis
abstract

در ریاضیات، حساب اعداد حقیقی برای مطالعه خواص اعداد استفاده می شود، در حالیکه این حساب برای بسیاری از مسائلِ جهان امروز که بصورت نادقیق می باشند نمی تواند کارایی لازم را داشته باشد. بنابراین لازم است تا تحلیل هایی غیر از تحلیل های معمولی روی اعداد حقیقی صورت گیرند. یکی از این تحلیل ها، حساب بازه ای می باشد که کمک شایانی به تجزیه و تحلیل مسائل نموده است. یکی از مسائل نادقیق، مسائل برنامه ریزی خطی با پارامترهای بازه ای می باشند. روشهای زیادی برای حل این مسائل وجود دارند. در بسیاری از این روشها ابتدا مساله برنامه ریزی خطی بازه ای به دو مساله برنامه ریزی خطی معمولی به نامهای مساله بهترین و بدترین تبدیل شده، سپس بهترین و بدترین مقادیر تابع هدف و دو جواب بهین متناظر تعیین می شوند. برخی از روشها نیز تنها مجموعه ای شامل جوابهای بهین مساله را بدست می آورند. ما در این پایان نامه مجموعه جواب بهین مساله برنامه ریزی خطی بازه ای را بعنوان اشتراک نواحی حاصل از قیود مسائل بهترین و بدترین بدست می آوریم. ابتدا مساله برنامه ریزی خطی بازه ای را با استفاده از ضرایب 0??_ij,?_i,?_j?1 که i=1,2,…,m و j=1,2,…,n به مساله ترکیب محدب تبدیل می کنیم. اگر برای هر i,j، ?_ij=?_i=?_j=0 ، مساله بهترین حاصل می شود. مساله بهترین را با تغییرات کوچک ضرایب ?_ij,?_i,?_j از صفر به یک، به سمت مساله بدترین حرکت می دهیم. جواب بهین هر یک از مسائل حاصل را بدست می آوریم. جوابهای بهین تمام مسائل، مجموعه ای را تشکیل می دهند که مجموعه جواب بهین مساله برنامه ریزی خطی بازه ای نامیده می شود.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

ناحیه جواب جدید برای حل مدل برنامه ریزی خطی بازه ای

We consider interval linear programming (ILP) problems in the current paper. Best-worst case (BWC) is one of the methods for solving ILP models. BWC determines the values ​​of the target function, but some of the solutions obtained through BWC may result in an infeasible space. To guarantee that solution is completely feasible (i.e. avoid constraints violation), improved two-step method (ITSM) ...

full text

مروری بر برنامه ریزی خطی بازه ای

این پایان نامه مروری بر برنامه ریزی خطی بازه ای دارد. روش های مختلفی برای حل این مسائل وجود دارد. در مرحله اول، برای مسائل برنامه ریز خطی با ضرایب هدف بازه ای، مفهوم جواب را تعمیم می دهیم. در مرحله دوم، مسئله برنامه ریزی خطی تماما بازه ای در نظر گرفته می شود. دو روش برای حل این مسئله مطرح می شود. در روش اول، بر پایه رتبه بندی روی بازه های بسته، مسئله را به یک مسئله برنامه ریزی خطی معمولی تبدیل ...

15 صفحه اول

برنامه ریزی خطی با ضرایب بازه ای

نادقیقی که به طور طبیعی در مسائل زندگی واقعی ظاهر می شود می تواند به راه های مختلفی مورد عمل قرار گیرد. گاهی در سیستم های معادلات یا نامعادلات خطی، ضرایب و مقادیر سمت راست (rhs) به طور دقیق مشخص نیستند، این واقعیت، سیستم های معادلات یا نامعادلات خطی بازه ای را بوجود می آورد. در برنامه ریزی خطی (lp) نیز در مسائل کاربردی این نادقیقی وجود دارد، برای حل نمودن یک مسأله ی برنامه ریزی خطی، لازم است که...

برنامه ریزی خطی نیمه نامتناهی: الگوریتم های حل و کاربردها

مسائل برنامه ریزی خطی نیمه نامتناهی گرچه دارای خصوصیاتی شبیه مسائل متناهی هستند اما در مواردی و خصوصا در شیوه های حل با آنها تفاوت دارند. در این نوشتار نمونه هایی از برنامه ریزی خطی نیمه نامتناهی و رده های مختلف آن را معرفی و تشریح می کنیم. سپس شکاف دوگانی را برای آنها تعریف کرده بر مبنای آن به ارائه الگوریتم های حل این گونه مسائل در حالت های پیوسته و شمارا می پردازیم. همچنین روش همگرایی در خص...

full text

مسئله برنامه ریزی خطی اوزان نسبی با ماتریس قضاوت بازه ای

ر این پایان نامه، ما یک مدل تصمیم گیری چندمعیاره را ارائه می دهیم . در این مدل تصمیم گیری چند معیاره تعداد متناهی از گزینه ها را در نظر می گیریم . در واقع دسترسی به گزینه ها مطابق مجموعه ای از کرانها براساس نسبت ترجیحی زوجهای مقایسه ای گزینه ها به صورت ماتریس قضاوت بازه ای است . در واقع، اگر مقدار برتری هر گزینه نسبت به گزینه دیگر براساس یک مجموعه کران دار تحقیق شود . آنوقت ما می خواهیم با توجه...

15 صفحه اول

یک الگوریتم خطی برای مساله ی پیداکردن هسته ی درخت های بازه ای وزندار

In this paper we consider the problem of finding a core of weighted interval trees.  A core of an interval graph is a path contains some intervals of graph so that the sum of distances from all intervals to this path is minimized. We show that intervals on core of a tree should be maximal, then a linear time algorithm is presented to find the core of interval trees

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه سیستان و بلوچستان - دانشکده ریاضی

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023